Flora-Incognita observations enable phenological monitoring throughout Europe

A new study by our research group shows that plant observations collected with identification apps can provide information about the developmental stages of plants – both on a small scale and across Europe. [Read the paper]

Why is it important to document phenology?

Many plants in temperate climates go through a cycle of flowering, leaf emergence, fruiting, leaf colouration and leaf fall every year. This process is called phenology and is strongly influenced by local climatic conditions (for example, the number of days per year on which a certain minimum temperature required for growth is reached; see “Growing Degree Day” or GDD). It is, therefore, not surprising that climate change has a substantial impact on phenology. For example, spring begins earlier than it did in the 1950s, meaning the growing season starts much earlier than it did back then. Such changes impact agricultural processes and can also lead to ecological imbalances. For example, plants begin to flower even before their pollinators are active. However, not all plants react equally to climatic changes. Species with a broader tolerance range for warm days, or where other factors determine phenology, are virtually unaffected by shifts. To gain a truly accurate understanding of the influence of climate on plant phenology, it is essential to document the phenology of as many different species as possible, in different countries and geographical regions.

How does phenological monitoring work?

Phenology is already being documented using various methods. Satellite images recognize the greening of entire areas, and cameras in treetops produce automated image series on the condition of the vegetation layer below. Such data sets allow statements to be made about large scales, but hardly allow any conclusions to be drawn about the phenology of individual species or even individuals. For this purpose, there are initiatives that are carried out with the help of trained volunteers. However, the number of these citizen scientists is constantly decreasing, and this type of data collection is usually limited to certain plant species (often trees), countries, or even smaller regions.

Is it possible to document phenology with Flora Incognita?

Data collected via plant identification apps such as Flora Incognita can be a solution. The scientists in our project already proved this in 2023: Plants are primarily noticed and photographed when they are conspicuous and also flower, bear colorful fruit, or autumn leaves. This results in observation patterns that indicate phenological events. These patterns often coincide with those published by the German Weather Service (DWD) concerning the onset of flowering species in Germany. Assuming that the DWD registers an earlier start of flowering of the elderberry in one year than in the previous year, this shift is also reflected in the identification requests from Flora Incognita.
Details of this study can be found in this article: Phenology monitoring with Flora Incognita plant observations.

A new study shows phenologies and bioclimatic correlations across Europe

Our new publication now shows that smartphone observations even reflect known supra-regional phenological patterns, such as

  • the later flowering of many species in Northern and Eastern Europe or
  • the later flowering of many species at higher altitudes, but also
  • a Europe-wide shift in the start of flowering between years, as has already been proven for Germany.

This proves that the data generated by plant identification apps is a reliable source for the occurrence of plants at a specific time and place and is well suited for answering further research questions – even on a larger scale.

The results of the study at a glance

Plants are more likely to flower when there are more warm days
We compared the Europe-wide observation data (sources: Flora Incognita and reporting platforms such as iNaturalist) from 2020 and 2021 for 20 different plant species. We found that spring-flowering plants in particular, such as the gamander speedwell Veronica chamaedrys, flowered earlier in 2020 – up to two weeks earlier than in 2021.

An analysis of the temperature at each location showed that there were significantly more days in spring 2020 on which an average of 5°C or more was reached, meaning that the plants could absorb more heat in a shorter period of time. The effect was less pronounced for species that flower later in the year, such as the tansy Tanacetum vulgare or the common viper’s bugloss Echium vulgare.

Plants flower later if they grow at higher altitudes, further east or north.
However, patterns could be recognized not only between the years but also between different regions. It is known that the same species flowers at different times depending on the location. (-> Hopkins’ bioclimatic law) For example, if the same plant species occurs in Sweden and Spain, the Spanish plant will flower a few days or even weeks earlier than the one in the north. The exact days until flowering naturally vary depending on the plant species. This regularity can also be illustrated with Flora Incognita data:

This figure shows the median of the observation data for the three plant species already presented. Pink and orange indicate that the species flowered early in the year at the respective location, while the same species flowered later at another location (coded dark green and blue). The longitudes and latitudes are clearly differentiated, as well as the low and high mountain ranges. Details of the data and methods used can be found in the publication linked at the end of the article.

All 20 plant species analyzed could be classified into one of three main patterns, illustrated here as examples. Veronica chamaedrys shows more reddish colours in 2020 than in 2021; as already mentioned, this is due to the warmer temperatures in spring 2020. Echium vulgare shows only minor responses to different climatic conditions over the years. For Tanacetum vulgare, we found that phenology shows an inverse pattern compared to the other species: Tansy is more likely to flower in eastern, northern, and high altitudes than its siblings in western, southern, and lower-lying parts of Europe. This phenomenon has also been described in the scientific literature. Species that need many warm days to flower have adapted to cold locations by shortening their vegetation period and flowering earlier.

Summary
For the first time, the new publication shows temporal and spatial shifts in plant phenology on a Europe-wide scale using data not collected explicitly for this purpose. For the users of Flora Incognita, this means that each individual plant identification satisfies more than just their curiosity. By documenting plant occurrences at a specific time in a particular place, they create a growing and robust data source on phenology that knows no national borders, includes new species, and can answer numerous further research questions.

Thank you for your curiosity.

The new publication is now freely available:
Rzanny, M., Mäder, P., Wittich, H.C. et al. Opportunistic plant observations reveal spatial and temporal gradients in phenology. npj biodivers 3, 5 (2024). https://doi.org/10.1038/s44185-024-00037-7

Veronica chamaedrys in the title image was captured by Ilse Schönfelder.

“Sonja Bernadotte Award for Paths to Nature Education” 2023 for Flora Incognita

The “Sonja Bernadotte Award for Paths to Nature Education” is annually presented by the German Horticultural Society 1822 (DGG) and serves as a recognition for outstanding achievements in the field of nature education. The award aims to raise awareness about the importance of nature education and experiences, strengthen commitment to nature education, and provide financial support for such efforts. In 2023, the recipient of the Sonja Bernadotte Award is the plant identification app, Flora Incognita. The board justified their decision by stating that “Germany’s most popular plant identification app is not only appreciated and used by amateurs, but is also now employed and recommended by botanists.” The selection statement highlighted its high scientific standards and its significance as an interdisciplinary citizen science project. “It is an excellent example of the meaningful and profitable use of artificial intelligence, contributing to the democratization of knowledge and modern paths of nature education, both in the formal education of children, youth, and students, as well as in informal adult education.”

Dr. Jana Wäldchen from the Max Planck Institute for Biogeochemistry in Jena and Prof. Patrick Mäder from the Technical University of Ilmenau received the award on October 20, 2023, at Schloss Dyck in Jüchen.

 

 

Ilmenau Science Night and Max Planck Day 2023

Ilmenau on the evening of July 1, 2023. People glance at their mobile phones to check if they’ll need an umbrella due to the weather. But is that all? No!

Some of them look at their phones to read about a pink-blooming wild plant: Epilobium angustifolium, it says, the Narrow-leaved Willowherb. Belongs to the Evening Primrose family and grows at the forest edge. Or Hypericum perforatum, the Common St. John’s Wort. “I know that as tea! So that’s how it looks?” Yes!

These situations and many similar ones were experienced as, on July 1, 2023, the doors of (among others) the Zuse Building at TU Ilmenau opened for Ilmenau Science Night, and many interested people came by to “personally meet Flora Incognita.” And we were well-prepared: With blooming wild plants in pots, an app quiz, and botanical tours around the university campus, but also with advanced offerings like microscopic examination of phytoplankton or information stands that explained how the Artificial Intelligence behind Flora Incognita is already being used to identify field wildflowers through drone images, or to support urban planners in creating bee-friendly landscapes.

Another focus of our presentation was to educate about how we conduct research with the plant identifications from the Flora Incognita app. Our scientists were eager to point out that the data already allows for the detection of phenological shifts in plant flowering phases, or that the spread of invasive species like Impatiens glandulifera can be monitored. In light of ongoing climate change, such information is very valuable; and with Flora Incognita’s new project feature, it’s easy for nature enthusiasts to conduct their own citizen science projects and analyze the observation data collected.

It’s always something special to engage with long-time fans and learn which aspects of the app are particularly popular and which ones have room for improvement. But we’re equally proud when we can dispel skepticism and encourage people to simply try out the app and start identifying plants. Fun Fact: Secretly, we like to count how many new installations we can achieve through our on-site efforts at such events!

But it’s not just in Ilmenau where we could convince: Also in Göttingen, where on June 23, in honor of the 75th anniversary of the Max Planck Society, Max Planck Day took place, we were present with an information booth on the marketplace. Unfortunately, due to persistent rain, not many people were out and about, but that allowed us to engage in longer and more intense conversations with interested individuals about our app, the loss of biodiversity, and our research work. In Göttingen, we were joined by scientists from the ATTO Tower (MPI for Biogeochemistry Jena and MPI for Chemistry Mainz), who invited attendees to climb the measurement tower in the Amazon rainforest and talk about their climate research using a VR station. A special highlight of the day was the visit of Prof. Patrick Cramer, the new president of the Max Planck Society, to our booth.

At this point, we would like to extend a heartfelt thank you to everyone who took the time to convey praise and criticism, ask questions, and be curious. Thanks also to Manuel Maidorn and the staff of the Max Planck Institute for Dynamics and Self-Organization in Göttingen for providing the many plants at the booth! Our gratitude also goes to our sponsors who make this public outreach possible.

See you soon!

collage of pictures taken at both events. They show our team on site, visitors on the booths, and plant identification with the Flora Incognita app.

Title image: Max Planck Society, photograph by David Ausserhofer

How to export your Flora Incognita records to a custom map (Google Maps, QGIS and R)

We get asked quite often of whether one can view the personal plant observations outside of the Flora Incognita app, for example in Google Maps or a Geographic Information System (GIS). The answer is simple: Yes, you can! In this article, you will find three tutorials for that – depending on your use case.

Exporting your data out of Flora Incognita

Regardless of the method you choose, first, you need to export your observations from the Flora Incognita app. To do that:

1) Open your observation list under My Observations from the home screen and tap on the Share icon at the top right.

2) You can now transfer either a .csv file or a .gpx file to your computer using various methods.

3) If you want to export your observations including the images, we recommend that you first filter the observation list to reduce the number of observations to be exported. The reason for this is the enormous increase in file size caused by the images.

 

 

 

Exporting Flora Incognita observations to Google Maps

With this method, you can view your findings in Google Maps on the desktop without requiring any additional software.

  1. Go to https://www.google.com/intl/en/maps/about/mymaps/ and start a new project under Get Started.
  2. Click on the Owned tab and select Create a New Map. You will get a blank map with its own context menu:
  3. Under Untitled Layer, click on Import and choose the previously exported .csv file.
  4. In the following menu, select the latitude and longitude columns. Click Continue.
  5. Now choose how your data points should be labeled. Choose name for the common name or scientific name for the scientific name. Click Finish. Note: The points are now marked but the labels are not visible yet.
  6. In the menu window, click on Uniform Style and choose the name you want to display under Label.
  7. Under Base Map, you can customize the underlying map as desired:
  8. Further individual adjustments are possible under the available menu options. Clicking on a data point will display the transferred meta-information.

Exporting Flora Incognita observations to QGIS

QGIS is a professional GIS application developed based on Free and Open-Source Software (FOSS). Choosing this option is useful if you work professionally or in your free time with GIS.

  1. Open QGIS and create a new project (Project -> New).
  2. In the left menu, select your map base layer under XYZ Tiles by double-clicking. In our example, we use OpenStreetMap. You can now zoom into the map.
  3. In the main navigation, select Layer -> Add Layer -> Add Delimited Text Layer.
  4. Choose your previously exported .csv file and check the extracted file format for the following parameters:
    • File format: CSV (comma separated values)
    • Geometry definition: X field: longitude; Y field: latitude
    • Geometry: EPSG:4326 – WGS 84

    Your data should look like this:

  5. Click Add at the bottom right and close the window. Now you will see your discoveries in the map, but still without labels. Learning how to customize your findings is the next step.
  6. Right-click on your Flora Incognita layer in the Layer panel to the left of the map. Select Properties.
  7. Under Label change the setting from No Label to Single Label. Under Value you can choose whether you want to display the scientific or the trivial name. Confirm with OK. The result looks like this:

Exporting Flora Incognita observations with R

R is a free programming language for statistical calculations and graphics. To follow this guide, you need to execute prepared scripts using the appropriate software. Basic knowledge of R is required.

  1. Go to https://www.r-project.org and install the latest version of the R program.
  2. Go to https://posit.co/products/open-source/rstudio/ and install the latest RStudio.
  3. Install and load the necessary libraries.

    install.packages("leaflet")
    install.packages("leaflet.extras2")
    install.packages("htmlwidgets")


    library(leaflet)
    library(leaflet.extras2)
    library(htmlwidgets)
  1. Read your .csv file.

    dat<-read.csv("/your/path/your_file.csv", header=TRUE)
  1. Create and load the map. Closely located observations are clustered.

    map1 %
    addProviderTiles('OpenStreetMap.Mapnik') %>%
    addCircleMarkers(lng = ~longitude, lat = ~latitude,
    label = ~scientific.name, radius=7, labelOptions = labelOptions(style = list("color" = "black"),
    noHide = T, textOnly=T, textsize = "10px", offset = c(1, 12)),
    color="black", clusterOptions = markerClusterOptions(spiderfyOnMaxZoom=T))

    map1
  1. Add the plant findings to the map. To display the trivial name, replace “scientific.name” with “name”.

    map2 %
    addProviderTiles('OpenStreetMap.Mapnik') %>%
    addLabelOnlyMarkers(lng = ~longitude, lat = ~latitude, group="labs",
    label = ~scientific.name, labelOptions = labelOptions(style = list("color" = "black"),
    noHide = T, textOnly=T, textsize = "10px", offset = c(1, 12))) %>%
    addCircleMarkers(lng = ~longitude, lat = ~latitude, color="black") %>%
    addCircleMarkers(lng = ~longitude, lat = ~latitude, radius=2, label = ~scientific.name, color="white")
    addLabelgun(map2, group="labs")

    map2
  1. Export your map as an .html file
    saveWidget(map2, file="/yourpath/map.html")

    Screenshot from the map generated with R. Three plant findings are visible in a lake landscape.

You can also download the guide as a text file: R_MapExport_EN

Two hands hold a smartphone over a flower-rich meadow. The smartphone display shows the Flora Incognita App.

Press Release: New AI for Flora Incognita

“Flora Incognita”, Germany’s most popular plant identification app, has been further enhanced by a new artificial intelligence (AI) – as a result, the number of identifiable plant species has tripled: around 16,000 species can be identified worldwide. The app, available in 20 languages, now also works offline. Its range of digital educational content has been significantly expanded to include a wide range of new plant information.

Scientists from the Technical University of Ilmenau and the Max Planck Institute for Biogeochemistry in Jena have improved Flora Incognita with a new technological basis of self-learning, deep neural networks. Prof. Patrick Mäder, head of the Department of Data Intensive Systems and Visualisation and project leader of Flora Incognita at the TU Ilmenau, and the research team from Jena have made great efforts to develop innovative machine-learning training methods for these networks in the last months: “We immediately applied the new methods to the Flora Incognita app and were thus able to process millions of images of plants worldwide in our data center at the TU Ilmenau. With the right images, the new networks are able to classify many plant species with an accuracy of almost 100 per cent”.

For the new app version, user-friendliness and accessibility have also been improved. Plant finds can now be captured offline in nature, i.e. without a network connection, and automatically identified later (with internet access). Germany’s most popular plant identification app is also used by teachers at schools and universities to support education. Since school devices rarely have mobile internet, in particular this target group benefits from the new offline mode.

In addition, a new gamification element has been introduced: Users can collect badges for documenting certain plant groups. With this, they not only enjoy collecting plants themselves over a longer period of time,but they also strengthen the awareness of biodiversity in their social environment. At the same time, the app creates an incentive to document already known species or other plant groups, which provides scientists with important data for their research projects.

Another new feature is the possibility to use Flora Incognita for citizen science projects. Lay people involved in the project can identify plants as usual, for example, invasive species of a region, special trees, or the plant diversity of a school campus.  Those responsible for the citizen science project then receive the anonymized observation data for scientific and nature conservation evaluation.

But not only the technology of the Flora-Incognita app has improved. The data basis and the underlying information have also been expanded. Citizen scientists, i.e. interested laypeople, have contributed to this. With the “Flora Capture” app, which was specially developed for the scientific documentation of plants, thousands of images from defined perspectives have already been transmitted, which have contributed to a significant improvement in the identification accuracy of the German flora, especially for critical plant groups such as grasses. Students of the University of Applied Sciences Erfurt participated in the recording of thousands of trees, so that now identification is also possible in winter on the basis of bud images. The authors of the book “African Plants – A Photo Guide” and members of the Geisenheim University of Applied Sciences and the Dresden University of Applied Sciences provided further important data for the expansion of the identifiable species.

Co-project leader Dr. Jana Wäldchen from the Max Planck Institute for Biogeochemistry Jena announces that the additional information offered in the app will be further expanded in the coming months: “We plan to supplement the plant fact sheets with additional exciting details. For example, we are thinking of information on how pollinator-friendly a species is or whether it is invasive. In this way, we would like to provide our users with interesting plant knowledge after the identification.

Flora Incognita now with offline mode

With our latest release of the Flora Incognita app, we are happy to give you two updates that many have asked for, in addition to numerous small bug fixes:

  • an offline mode
  • badges for 2023

An offline mode for Flora Incognita

Often, the most exciting plants grow where there is no internet coverage, or teachers want to use the app in an educational context, but the need for a mobile data connection makes this impossible. Now we have a solution for this: the offline mode. What does it do?

It allows you to record plants with the Flora Incognita app and save them as observations. However, you do not receive a plant name, but the observation is saved as “unknown herb or shrub”, “unknown tree”, etc. in your observation list. This also corresponds to the process that botanists would follow: What is not identified in the field is packed up and identified later. This is now also the case with the app. When you are back home (or somewhere with access to the internet), you can identify the unknown observations with a click and read the species fact sheets of the plants you have found – as usual.

By the way: Plants identified in offline mode also contribute to the worldwide monitoring of plant diversity – provided you have allowed Flora Incognita access to your location. In this case, the location of the plant is stored as meta-information at your observation.

Badges 2023

The introduction of the badges last year brought great joy to many users, and right in the first days of the new year we received many e-mails whether there will also be new badges for this year. Yes! They are now ready and waiting for you to collect them:

– Plant of the Year 2023: Collect the common self-heal (Prunella vulgaris)

– Tree of the Year 2023: Collect a brown birch (Betula pubescens)

– Poisonous Plant of the Year 2023: Collect parsley (Petroselinum crispum)

– Medicinal Plant of the Year 2023: Collect a vine (Vitis vinifera)

– Plant Society of the Year: Collect a representative of the Littorelletea uniflorae community

Have fun!

If you enjoy our app and plant identification, we would be very happy to receive a rating and a few kind words in the App Store. Thank you very much!

Plant identification app “Flora Incognita” honored with Thuringian Research Prize

One third of the plant species in Germany is listed as endangered, tendency increasing. At the same time, the number of people with species knowledge is continuously decreasing. But how can we protect species that we don’t recognize? The Flora Incognita research project combines smartphones, artificial intelligence and citizen participation in an app that interactively and automatically identifies plants based on image recordings. With every successful application, the app learns and improves its recognition accuracy. At the same time, the records of the identified species and locations create valuable data sets to answer questions of species protection and biodiversity. More than 1 million people, from enthusiastic laypersons to biology professors, are already using the free app. The interdisciplinary project team from the Max Planck Institute for Biogeochemistry in Jena and the Technical University of Ilmenau was honored for its development with the Thuringian Research Prize in the category of applied research.

Read more

Flora Incognita honored with special prize at Thuringian Environmental Award 2019

The Thuringian Environmental Prize, awarded by the Ministry for the Environment, Energy and Nature Conservation, recognizes the commitment for a habitable environment and healthy nature. In Thuringia, the prize is awarded for outstanding achievements and dedication to environmental protection that contribute to ecological improvements in the context of sustainable development.

The high-ranking, 12-member jury selected 2 special prizes from among the applications received in addition to the prize winners from outside academic research. The Flora Incognita research group of the Max Planck Institute for Biogeochemistry (MPI-BGC) was honored with this prize for its app for plant identification.

Dr. Jana Wäldchen, head of the research group at MPI-BGC, together with Prof. (JP) Dr. Patrick Mäder, TU Ilmenau, accepted the award from Minister Anja Siegesmund in the Jena Climate Pavillon. „After almost 5 years of intensive development work, we have created a widely used and popularly accepted app for automatic plant identification,“ says Patrick Mäder, „but we want to continue to make continuous improvements for the users.“
„In the long run, we as researchers can use the data from the Flora Incognita App to make many other decipherings: When do which species bloom? How strongly do the traits of the individual plants vary? What is the relationship to climate change and land use patterns?“
emphasized Jana Wäldchen.