How smartphones can help detect ecological change

Leipzig/Jena/Ilmenau. Mobile apps like Flora Incognita that allow automated identification of wild plants cannot only identify plant species, but also uncover large scale ecological patterns. These patterns are surprisingly similar to the ones derived from long-term inventory data of the German flora, even though they have been acquired over much shorter time periods and are influenced by user behaviour. This opens up new perspectives for rapid detection of biodiversity changes. These are the key results of a study led by a team of researchers from Central Germany, which has recently been published in Ecography.

With the help of Artificial Intelligence, plant species today can be classified with high accuracy. Smartphone applications leverage this technology to enable users to easily identify plant species in the field, giving laypersons access to biodiversity at their fingertips. Against the backdrop of climate change, habitat loss and land-use change, these applications may serve another use: by gathering information on the locations of identified plant species, valuable datasets are created, potentially providing researchers with information on changing environmental conditions.

But is this information reliable – as reliable as the information provided by data collected over long time periods? A team of researchers from the German Centre for Integrative Biodiversity Research (iDiv), the Remote Sensing Centre for Earth System Research (RSC4Earth) of Leipzig University (UL) and Helmholtz Centre for Environmental Research (UFZ), the Max Planck Institute for Biogeochemistry (MPI-BGC) and Technical University Ilmenau wanted to find an answer to this question. The researchers analysed data collected with the mobile app Flora Incognita between 2018 and 2019 in Germany and compared it to the FlorKart database of the German Federal Agency for Nature Conservation (BfN). This database contains long-term inventory data collected by over 5,000 floristic experts over a period of more than 70 years.

Mobile app uncovers macroecological patterns in Germany

The researchers report that the Flora Incognita data, collected over only two years, allowed them to uncover macroecological patterns in Germany similar to those derived from long-term inventory data of German flora. The data was therefore also a reflection of the effects of several environmental drivers on the distribution of different plant species.

However, directly comparing the two datasets revealed major differences between the Flora Incognita data and the long-term inventory data in regions with a low human population density. “Of course, how much data is collected in a region strongly depends on the number of smartphone users in that region,” said last author Dr. Jana Wäldchen from MPI-BGC, one of the developers of the mobile app. Deviations in the data were therefore more pronounces in rural areas, except for well-known tourist destinations such as the Zugspitze, Germany’s highest mountain, or Amrum, an island on the North Sea coast.

User behaviour also influences which plant species are recorded by the mobile app. “The plant observations carried out with the app reflect what users see and what they are interested in,” said Jana Wäldchen. Common and conspicuous species were recorded more often than rare and inconspicuous species. Nonetheless, the large quantity of plant observations still allows a reconstruction of familiar biogeographical patterns. For their study, the researchers had access to more than 900,000 data entries created within the first two years after the app had been launched.

Automated species recognition bears great potential

The study shows the potential of this kind of data collection for biodiversity and environmental research, which could soon be integrated in strategies for long-term inventories. “We are convinced that automated species recognition bears much greater potential than previously thought and that it can contribute to a rapid detection of biodiversity changes,” said first author Miguel Mahecha, professor at UL and iDiv Member. In the future, a growing number of users of apps like ‘Flora Incognita’ could help detect and analyse ecosystem changes worldwide in real time.

The Flora Incognita mobile app was developed jointly by the research groups of Dr. Jana Wäldchen at MPI-BGC and the group of Professor Patrick Mäder at TU Ilmenau. It is the first plant identification app in Germany using deep neural networks (deep learning) in this context. Fed by thousands of plant images, that have been identified by experts, it can already identify over 4,800 plant species.

“When we developed Flora Incognita, we realized there was a huge potential and growing interest in improved technologies for the detection of biodiversity data. As computer scientists we are happy to see how our technologies make an important contribution to biodiversity research,“ said co-author Patrick Mäder, professor at TU Ilmenau.

Original publication
Miguel D. Mahecha, Michael Rzanny, Guido Kraemer, Patrick Mäder, Marco Seeland, Jana Wäldchen (2021). Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography, DOI: 10.1111/ecog.0549

(Text: Kati Kietzmann, iDiv)

Efficient pollen identification – Interdisciplinary research team combines image-based particle analysis with artificial intelligence

 

From pollen forecasting, honey analysis and climate-related changes in plant-pollinator interactions, analysing pollen plays an important role in many areas of research. Microscopy is still the gold standard, but it is very time consuming and requires considerable expertise. In cooperation with Technische Universität (TU) Ilmenau, scientists from the Helmholtz Centre for Environmental Research (UFZ) and the German Centre for Integrative Biodiversity Research (iDiv) have now developed a method that allows them to efficiently automate the process of pollen analysis. Their study has been published in the specialist journal New Phytologist.

Pollen is produced in a flower’s stamens and consists of a multitude of minute pollen grains, which contain the plant’s male genetic material necessary for its reproduction. The pollen grains get caught in the tiny hairs of nectar-feeding insects as they brush past and are thus transported from flower to flower. Once there, in the ideal scenario, a pollen grain will cling to the sticky stigma of the same plant species, which may then result in fertilisation. “Although pollinating insects perform this pollen delivery service entirely incidentally, its value is immeasurably high, both ecologically and economically,” says Dr. Susanne Dunker, head of the working group on imaging flow cytometry at the Department for Physiological Diversity at UFZ and iDiv. “Against the background of climate change and the accelerating loss of species, it is particularly important for us to gain a better understanding of these interactions between plants and pollinators.” Pollen analysis is a critical tool in this regard. 

Each species of plant has pollen grains of a characteristic shape, surface structure and size. When it comes to identifying and counting pollen grains – measuring between 10 and 180 micrometres – in a sample, microscopy has long been considered the gold standard. However, working with a microscope requires a great deal of expertise and is very time-consuming. “Although various approaches have already been proposed for the automation of pollen analysis, these methods are either unable to differentiate between closely related species or do not deliver quantitative findings about the number of pollen grains contained in a sample,” continues UFZ biologist Dr. Dunker. Yet it is precisely this information that is critical to many research subjects, such as the interaction between plants and pollinators. 

In their latest study, Susanne Dunker and her team of researchers have developed a novel method for the automation of pollen analysis. To this end they combined the high throughput of imaging flow cytometry – a technique used for particle analysis – with a form of artificial intelligence (AI) known as deep learning to design a highly efficient analysis tool, which makes it possible to both accurately identify the species and quantify the pollen grains contained in a sample. Imaging flow cytometry is a process that is primarily used in the medical field to analyse blood cells but is now also being repurposed for pollen analysis. “A pollen sample for examination is first added to a carrier liquid, which then flows through a channel that becomes increasingly narrow,” says Susanne Dunker, explaining the procedure. “The narrowing of the channel causes the pollen grains to separate and line up as if they are on a string of pearls, so that each one passes through the built-in microscope element on its own and images of up to 2,000 individual pollen grains can be captured per second.” Two normal microscopic images are taken plus ten fluorescence microscopic images per grain of pollen. When excited with light radiated at certain wavelengths by a laser, the pollen grains themselves emit light. “The area of the colour spectrum in which the pollen fluoresces – and at which precise location – is sometimes very specific. This information provides us with additional traits that can help identify the individual plant species,” reports Susanne Dunker. In the deep learning process, an algorithm works in successive steps to abstract the original pixels of an image to a greater and greater degree in order to finally extract the species-specific characteristics. “Microscopic images, fluorescence characteristics and high throughput have never been used in combination for pollen analysis before – this really is an absolute first.” Where the analysis of a relatively straightforward sample takes, for example, four hours under the microscope, the new process takes just 20 minutes. UFZ has therefore applied for a patent for the novel high-throughput analysis method, with its inventor, Susanne Dunker, receiving the UFZ Technology Transfer Award in 2019.

The pollen samples examined in the study came from 35 species of meadow plants, including yarrow, sage, thyme and various species of clover such as white, mountain and red clover. In total, the researchers prepared around 430,000 images, which formed the basis for a data set. In cooperation with TU Ilmenau, this data set was then transferred using deep learning into a highly efficient tool for pollen identification. In subsequent analyses, the researchers tested the accuracy of their new method, comparing unknown pollen samples from the 35 plant species against the data set. “The result was more than satisfactory – the level of accuracy was 96 per cent,” says Susanne Dunker. Even species that are difficult to distinguish from one another, and indeed present experts with a challenge under the microscope, could be reliably identified. The new method is therefore not only extremely fast but also highly precise.

In the future, the new process for automated pollen analysis will play a key role in answering critical research questions about interactions between plants and pollinators. How important are certain pollinators like bees, flies and bumblebees for particular plant species? What would be the consequences of losing a species of pollinating insect or a plant? “We are now able to evaluate pollen samples on a large scale, both qualitatively and- at the same time – quantitatively. We are constantly expanding our pollen data set of insect-pollinated plants for that purpose,” comments Susanne Dunker. She aims to expand the data set to include at least those 500 plant species whose pollen is significant as a food source for honeybees.

Publication:
Susanne Dunker, Elena Motivans, Demetra Rakosy, David Boho, Patrick Mäder, Thomas Hornick, Tiffany M. Knight: Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist https://doi.org/10.1111/nph.16882